SELF-ATTENTION BASED PROSODIC BOUNDARY PREDICTION FOR CHINESE SPEECH
SYNTHESIS

Chunhui Lu*?, Pengyuan Zhang*'?, Yonghong Yan'*?3

1 Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics,China
2 University of Chinese Academy of Sciences, China
3Xinjiang Key Laboratory of Minority Speech and Language Information Processing,
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China

ABSTRACT

Predicting prosodic boundaries from input text plays an im-
portant role in Chinese text-to-speech (TTS) system, which
directly influences the naturalness and intelligibility of syn-
thesized speech. In this paper, we propose to combine self-
attention with multitask learning for prosodic boundary pre-
diction. Self-attention is used to capture the dependency
between two arbitrary characters in the input sentence, while
multitask learning models the relationships between prosodic
boundaries and lexicon words by setting word segmentation
as an auxiliary task. The proposed method can generate
prosodic boundary labels directly from Chinese characters
and achieve the whole process end-to-end. Experimental re-
sults show the effectiveness of our proposed model and prove
that the performance can be further improved by pretraining
the model with extra word segmentation data.

Index Terms— prosodic boundary prediction, self-
attention, multitask learning, speech synthesis

1. INTRODUCTION

Predicting prosodic structure from text is an essential step
for statistical parametric speech synthesis (SPSS), whose
results combined with other linguistic information are fur-
ther utilized to predict acoustic parameters such as duration,
pause, pitch and spectrum. This indicates that the accuracy of
prosodic structure prediction largely determines the natural-
ness and even the intelligibility of synthesized speech.

In Chinese text-to-speech (TTS) systems, a hierarchical
prosodic structure, including prosodic word (PW), prosodic
phrase (PPH) and intonational phrase (IPH), is widely em-
ployed to distinguish different levels of pauses between words
[1]. Predicting these prosodic structure is to identify whether
each word boundary in a sentence is a prosodic boundary and
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decide its prosodic hierarchy. To achieve this, many statisti-
cal machine learning methods have been investigated in ear-
lier times, including classification and regression tree (CART)
[2], hidden Markov model (HMM) [3], maximum entropy
model (ME) [4], and conditional random fields (CRF) [5, 6].
Among these methods, CRF achieved the best reported per-
formance.

More recently, deep recurrent neutral network (RNN)
based architecture along with embedding features have been
investigated [7-11]. These works have proved that using
bidirectional long short-term memory (BLSTM) recurrent
networks achieves superior performance over the CRF based
method as it captures long-range context information. More-
over, replacing traditional linguistic features with embedding
features learned from raw text can further enhance the perfor-
mance. Despite its successes, these RNN based models have
limitations. For one thing, RNNs compute the hidden state of
each time-step sequentially, which precludes its paralleliza-
tion and leads to the O(n) path length between two arbitrary
characters. Another one is concerned with input features.
Using word embeddings as input means that automatic word
segmentation should be performed before prosodic boundary
prediction, so the word segmentation errors will be propa-
gated and accumulated.

In this paper, we propose to use self-attention to replace
RNNss for the task of prosodic boundary prediction. In con-
trast to RNNSs, self-attention is highly parallel and connects
two arbitrary characters with each other directly regardless
of their distance. Along with self-attention, multitask learn-
ing framework is implemented to capture the correlations be-
tween prosodic units and lexicon words by setting word seg-
mentation as a secondary task. Our model is end-to-end and
predicts prosodic boundaries directly from Chinese charac-
ters to avoid the negative effects of word segmentation er-
rors. Moreover, we investigate the effectiveness of using ex-
tra word segmentation data to pretrain the model as we be-
lieve improving word segmentation accuracy is beneficial for
prosodic boundary prediction. The rest of this paper is orga-
nized as follows. Section 2 describes our proposed method.
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Fig. 1. The architecture of proposed model

Section 3 discusses the experiments, followed by the conclu-
sions in section 4.

2. PROPOSED METHOD

As illustrated in Fig.1, our proposed model is composed of
three components. The embedding layer maps each Chinese
character of input sentence into corresponding embeddings
as basic feature vectors and these features are updated during
training. The main component of our model consists of N
identical layers. Each layer contains a feed-forward sub-layer
followed by a self-attention sub-layer. These layers receive
a sequence of character embeddings as input, and pass the
output to different task related softmax classification layers to
generate final prediction results.

2.1. Self-attention model

Inspired by the successful use of self-attention in many natu-
ral language processing (NLP) tasks [12-14], we investigate
it in prosodic boundary prediction which can be seen as a se-
quence labeling problem.

We adopt the multi-head self-attention [12], whose com-
putation graph is depicted in Fig.2. It consists of h attention
heads, each of which learns a distinct attention function from
different representation subspaces to attend at different posi-
tions in the sequence.

Specifically, given an input matrix X € R**¢, the multi-
head attention mechanism first maps this matrix to h different
queries, keys and values matrices by using linear projection.
Formally, for the i-th head, we denote the queries, keys and
values by Q € Rt*4/h K ¢ R*4/h and V e RI*4/h re-
spectively. Then the scaled dot-product attention [12] is used
to compute the context vectors as:
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Fig. 2. The computation graph of multi-head self-attention
mechanism

Finally, the output Y is computed as below:
M = Concat(My, ..., My,) 2)

Y = MW 3)

where M € R**% and W € R4,

Using the weighted sum to produce output vectors limits
the representational power of our model. To further improve
the modeling power of the network, we add a feed-forward
sub-layer before self-attention sub-layer. It consists of two
linear projections with a ReLU activation [15] in the middle:

FFN(X) = RCLU(XW1 + b1)Wa + bo 4@

where W; € R4 W, € R4 >4 and we set dy = 400 in
all our experiments.

To ease the training process, we employ a residual con-
nection [16] around each of the two sub-layers mentioned
above. The output Y of each sub-layer is computed by the
following equation:

Y = X + Sub-Layer(X) 5)

After the residual connection, layer normalization [17] is ap-
plied to stabilize the activations of the network.

Since self-attention cannot distinguish different positions
of the sequence, we add positional encodings to the input em-
beddings. In this work, we use sine and cosine functions of
different frequencies [12] to encode the position:

PE(t, 2i) = sin(t/10000%/4) (6)

PE(t,2i + 1) = cos(t/10000%/%) (7)

Where ¢ is the position and % is the dimension. The posi-
tional encodings have the same dimension as the input char-
acter embeddings, so that they can be added directly without
introducing additional parameters.

2.2. Multitask learning

For Chinese speech synthesis, IPH is often separated by punc-
tuations and easy to be recognized, so we focus on PW and
PPH prediction in this work. Unlike previous works that pre-
dicted different levels of prosodic boundary by different mod-
els. We treat PW and PPH prediction as two related tasks and
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predict them in one model by using multitask learning frame-
work.

It’s hard to model prosodic boundaries directly from
Chinese characters because the lack of word level repre-
sentations. We add word segmentation as an auxiliary task
so that prosodic boundary prediction task can acquire word
boundaries information by sharing high-level features from
the shared hidden layers. Same to the conventional multitask
learning network, our model can be trained by minimizing
the global loss computed from the sum of costs from three
tasks.

3. EXPERIMENTS

3.1. Datasets

We evaluate the proposed method on a neutral Chinese speech
synthesis corpus recorded by a professional female speaker
which contains 9,000 sentences. Prosodic boundaries of all
the sentences are manually labeled by an annotator through
listening to the utterances and reading the transcriptions. 90%
of the utterances are used for training, 5% are used for vali-
dation, and the remaining 5% are used for testing. A large
set of raw texts are collected to pretrain embeddings using
word2vec [18]. The word embeddings dimension is set to
300 while the character one is set to 100. Besides, the MSR
training set of SIGHAN Bakeoff 2005 [19] which contains
more than 80,000 sentences is used as extra corpus for model
pretraining in system SA-MTL-P.

3.2. System built

The output for PW and PPH have three dimensions, each cor-
responds to one of three boundary tags: B, NB and O. B for
boundary, NB for non-boundary, and O for other symbols.
For word segmentation, we use 5 tags to represent different
character positions in the word: S for single word, B for the
first character in a word, M for middle characters, E for the
last one and O for other symbols.

To investigate the relationships between prosodic bound-
aries and lexicon words, it’s worth comparing different sys-
tems with or without word level information as input. Based
on these, the following systems are built with the help of Ten-
sorFlow [20].

1. BLSTM-CRF: BLSTM-CRF based model which uses
word embeddings as input and achieves state-of-the-art re-
sults in [11] is used as our baseline. The input words are
manually labeled.

2. SA-Char: The model based on self-attention with Chi-
nese characters as the only input.

3. SA-Char-W: Adding a five-dimension one-hot vector
that represents the position of the character in its correspond-
ing word to the input of system SA-Char.

4. SA-MTL: Adding word segmentation as an extra task
to system SA-Char.

Table 1. Results for different systems

Systems PW-F1 PPH-FI W-ACC
BLSTM-CRF | 92.99 81.69 -
SA-Char 89.30 80.81 -
SA-Char-W 93.66 83.39 -

SA-MTL 90.58 81.93 0.8556

SA-MTL-P 93.65 83.89 0.9109

5. SA-MTL-P: Using the extra word segmentation data
to pretrain the system SA-MTL.

For self-attention related models, the number of hidden
layers and heads h are both set to 4. To mitigate overfit-
ting, dropout [21] layers are added before the residual connec-
tions, the attention softmax layer and the feed-forward ReLU
hidden layer, and the keep probabilities are set to 0.8, 0.9,
0.9 respectively. Parameter optimization is performed using
Adam [22] with default learning rate at 0.001.

3.3. Results

To evaluate our systems, we use F1 score for PW (PW-F1) and
PPH (PPH-F1), and word segmentation accuracy (W-ACC)
as our measurements. W-ACC is calculated as the number
of characters with correct word position tag divided by the
number of all the characters. Experimental results are shown
in Table 1.

Comparing system SA-Char to other three self-attention
based systems, it’s obvious that introducing word level in-
formation is effective and necessary for prosodic boundaries
modeling. By using multitask learning framework, system
SA-MTL captures the correlations between prosodic bound-
aries and lexicon words to some degree and consequently im-
proves the results on system SA-Char. Using extra word seg-
mentation data to pretrain the model greatly improves the per-
formance on system SA-MTL and outperforms the baseline
system BLSTM-CRF on both PW and PPH boundaries. For
PW, SA-MTL-P achieves comparable result to system SA-
Char-W which uses the ”golden” character position tags dur-
ing training and evaluation and is supposed to be the upper
bound. It further reveals that PW boundaries and lexicon
words are highly relevant and improving W-ACC is crucial
to the performance of PW. In terms of PPH, SA-MTL-P even
achieves better result than SA-Char-W, which might because
by the utilization of large-scale data, the network better mod-
els the long-distance dependencies in the text which are more
important for PPH.

3.4. Analysis

As self-attention is first used to prosodic boundary predic-
tion, we analyze the main factors that influence the results
on the system SA-MTL-P. Experimental results are shown in
Table 2. Rows 1-4 show the effects of different number of lay-
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Table 2. Detailed results on system SA-MTL-P

FEN PE Depth | PW-FI PPH-FI W-ACC
I v 4 | 9365 8389 09109
2V v 2 | 9247 8334 09014
3y Vv 3 | 9306 8346 09071
4 v 5 | 9391 8347 09075
5 x J 4 | 9192 820 09031
6  x 4 | 7572 5033  0.7951

Table 3. Comparision between argmax decoding and con-
strained decoding

Decoding PW-F1 PPH-F1I W-ACC
Argmax Decoding 93.65 83.89 0.9109
Constrained Decoding | 93.53 83.22 0.9109

ers. Increasing the model depth gradually improves the per-
formance, but there are no longer consistent improvements on
both PW and PPH when the depth coming to 5. So we believe
4 layers are sufficient for prosodic boundary modeling. Row
5 show the results of 4 layered model without feed-forward
sub-layers. Its performance is even not as good as the per-
formance of 2 layered model with FFN . It indicates that the
feed-forward sub-layers are the essential components to en-
hance the model expressive ability. Furthermore, comparing
rows 1 and 6 we can draw the conclusion that positional en-
codings are indispensable for our model.

Previous work [11] showed that adding a CRF layer at the
output of the model allows the network to measure the prob-
ability of transition between labels and to generate the most
optimal tag sequences. So it’s necessary to compare our de-
coding method which uses the tag with highest probability for
each character as the final output with the CRF constrained
decoding method. Experimental results are listed in Table 3,
from which we can observe a slightly performance drop when
using constrained decoding. It indicates that our self-attention
based model is powerful enough to capture the transition re-
lationship among labels.

To figure out what information the model attends to, we
visualize the attention weights for different heads in layer 3
of 4, which are showed in Fig.3. We observe that each head
has different attention weights given a certain input sentence,
which shows that multi-head attention can learn information
from different representation subspaces. For each character
in the sentence, the heads mainly focus on the two charac-
ters adjacent to it and this range is sufficient to decide PW
boundaries at most times as PW usually consists of two or
three characters. Moreover, the first character also attends to
the last one in head 1 and 4, which proves that self-attention
mechanism is able to model the long-distance dependencies
of two arbitrary characters.

To further evaluate the prosody modeling performance
of system BLSTM-CRF and SA-MTL-P, we conduct an AB
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Fig. 3. The visualization of attention weights in layer 3 of 4.
The input is prosodic boundary prediction (in Chinese)
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Fig. 4. The preference of AB test.

preference test of the synthesized speech. 20 sentences are
randomly selected from the test set with different prosodic
boundary prediction results and corresponding speech are
generated using our LSTM based TTS engine'. A group of
10 subjects were asked to give their preference in terms of
the naturalness for each speech pair. The percentage prefer-
ence is shown in Fig.4. We can clearly see that the proposed
method (system SA-MTL-P) is significantly better than the
baseline system BLSTM-CREF in terms of the naturalness of
synthesized speech (p < 0.0001).

4. CONCLUSIONS

In this paper, we present a self-attention based multitask
learning architecture which achieves prosodic boundary
prediction and word segmentation at the same time. Self-
attention is used to capture the contextual dependencies of
the input sentence. While multitask learning further helps to
model correlations between prosodic structure and lexicon
words. By using extra word segmentation data to pretrain
the model, the performance can be further improved and out-
performs previous state-of-the-art method (BLSTM-CRF).
In the future, we will investigate the possibility of using
self-attention to other text analysis tasks of speech synthesis.

Thttps://chunhui-lu.github.io/ICASSP2019/index.html
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